19.7 C
Belgrade
Supported byspot_img
spot_img

Paving The Way To Cleaner Nickel

Member of Europium Groupspot_img
Supported byspot_img

The fast-evolving nickel market

The green transition will require a substantial supply of raw materials, with nickel emerging as a critical enabler of this transformation. In this paper T&E looks at the current nickel market globally, Europe’s potential, and the ways to source nickel sustainably.

Nickel in lithium-ion batteries for electric vehicles provides longer driving ranges and battery chemistries are evolving rapidly. The currently popular high-nickel chemistry (NMC 811) contains around 0.66 kg Ni/kWh, but alternative chemistries with lower content are emerging. In 2030, nickel-containing chemistries are expected to account for around half of the global market.

Supported by

To keep up with the rising demand driven by the widespread adoption of electric vehicles, nickel production will need to expand. A significant portion of the global nickel supply — around 60% of the mined output and 40% of the refined output by 2030 — will originate from Indonesia, which has rapidly grown into a nickel powerhouse in recent years.

Nickel demand and production capacities in Europe

In Europe, the nickel mining capacities potentially relevant for the battery sector could reach 66 kt Ni, meeting 16% of the region’s demand from electric vehicles and energy storage systems in 2030. Refining capacities of nickel sulphate — the material of choice for these batteries — amount to 63 kt Ni, or 15% of the region’s future battery demand, with a potential expansion, albeit uncertain, of 35 kt (8%). Demand coverage would be even higher if some of the metal capacities were diverted to this sector, meeting up to around 70% of the demand. However, this would not account for other competing applications and remains uncertain.

Reducing GHG emissions is key to improving nickel’s environmental credentials

Nickel mining and refining comes with a certain carbon footprint, but there are solutions to improve this environmental impact. Greenhouse gas (GHG) emissions vary widely across nickel sulphate production sites, depending on multiple factors including the energy source and production technologies deployed. Analysis by Minviro shows that operations with access to renewable energy and using hydrometallurgical technologies, such as bioheap leaching and pressure oxidation, have the lowest carbon footprint.

Specifically, a comparison of six nickel sulphate production routes reveals that emissions levels at the best performing facilities, located in Canada and Finland, are 70% and 63% lower, respectively, than the industry average. At the opposite end, processing laterite ores into nickel pig iron (NPI) to matte to nickel sulphate generates 5 times more emissions than the industry average, while the high pressure acid leaching (HPAL) route, increasingly popular in Indonesia, produces almost twice as much emissions than the industry average.

GHG emissions vary widely across nickel production sites, depending on ore, location, technology and energy source

Studies show that switching to renewable sources of electricity alone can reduce emissions by up to 40% on average. Other key solutions to mitigate the industry’s GHG emissions include using zero-carbon chemicals in the processes, decarbonising mining vehicles, streamline logistics and developing and adopting more efficient ore processing techniques that require less energy, such as bioheap leaching and pressure oxidation for sulphides, as well as heap leaching and atmospheric hydrometallurgical processing for laterites.

Policies can enable cleaner nickel production

However, policies are needed to ensure nickel’s production becomes cleaner. These include increasing renewables share in the energy mix, defining cleaner low emission nickel refining and processing routes (e.g. via EU Taxonomy Regulation) to stimulate investments in hydrometallurgy-based technologies, and mandating the use of best available technologies (e.g. for waste management and biodiversity conservation). Globally, applying robust standards such as the Initiative for Responsible Mining Assurance (IRMA) to more mining sites will improve environmental and social stewardship.

In Europe the focus should be on creating a local battery value chain as part of the EU Critical Raw Materials Act, with support for strategic projects that adhere to strict environmental and social standards, and forward looking industrial strategy centred around targeted funding support (e.g. via the EU Innovation Fund). In addition, collaborating with nickel-rich countries, investing in sustainable large-scale projects abroad and sharing expertise will be key for establishing mutually beneficial trade relationships.

 

Source: Clean Technica

Supported byElevatePR Digital

Related News

Rio Tinto challenges Serbian government with arbitration notice on Jadar project

Background of the dispute: Jadar project and environmental protests The British-Serbian activist group Earth Thrive has reported that Rio Tinto has officially notified the Serbian...

There is no technology that guarantees the safe processing of lithium in the form it exists in Serbia

The Rio Tinto lithium mining project has never been conclusively dismissed, just paused, waiting for the dust to settle before being reintroduced with even...

“Jadar” will not pollute river streams

As the discussion about the "Jadar" project has reignited in recent days, the public in Serbia remains confused by the extremely contradictory narratives about...

Serbia’s lithium mining revival: Implications for EU membership and geopolitics

Serbia is aiming to position itself as a significant supplier of lithium in Europe, reviving a contentious mining project that was previously abandoned due...
Supported by
Supported by
Supported by
error: Content is protected !!