-1.7 C
Belgrade
Supported byspot_img
spot_img

LLNL innovates rare-earth element separation using bioengineered proteins”

Member of Europium Groupspot_img
Supported byspot_img

Lawrence Livermore National Laboratory (LLNL) scientists and collaborators are leveraging bioengineered protein-based technology to develop a novel separation technique aimed at increasing the concentration of rare-earth elements (REEs), thus enhancing their availability for the defense sector.

Through the Defense Advanced Research Projects Agency (DARPA) Environmental Microbes as a BioEngineering Resource (EMBER) program, the team has secured an additional $4.6 million in R&D funding for phase 2. Their focus is on utilizing bioengineered proteins to optimize the biomining workflow and produce high-value reagents crucial for REE processing.

LLNL scientist Dan Park explained, “We will continue our efforts to identify and optimize rare-earth binding proteins for various stages of rare-earth separation, including screening naturally occurring proteins and designing proteins de novo.”

Supported by

REEs, consisting of 17 elements in the periodic table, are vital for American competitiveness in sectors such as clean energy and national security. They are utilized in a myriad of devices including computer components, wind turbines, electric vehicles, and defense technologies like lasers and precision-guided weapons.

Conventional chemical processes for REE extraction and purification are complex and environmentally harmful. LLNL’s approach, utilizing bioengineered proteins like lanmodulin, offers a one-step quantitative and selective extraction of REEs from sources like electronic waste and coal byproducts, a significant advancement compared to traditional chemical extraction methods.

LLNL scientist Yongqin Jiao, principal investigator for the project, highlighted, “Our protein-based rare-earth separation technologies continue to advance. We are poised to discover REE-binding proteins with significantly greater separation power than traditional solvent extraction methods.”

Despite the U.S. possessing sufficient domestic REE resources, its supply chain remains vulnerable due to reliance on foreign entities for separation and purification. LLNL’s biomining approach aims to address this vulnerability by leveraging microbes to extract or separate target metals, revolutionizing REE extraction and recycling.

LLNL’s efforts are supported by its high-performance supercomputer facility, crucial for machine learning to design and improve proteins with enhanced REE specificity and affinity. The ultimate goal is to commercialize this technology for application in the mining, mining technology, and REE recycling sectors.

The LLNL research team includes Ziye Dong, Patrick Diep, Jeremy Seidel, Ed Lau, Fangchao Song, and Lin Song, with funding provided by DARPA’s Environmental Microbes as a BioEngineering Resource program.

Supported byElevatePR Digital

Related News

India set to decide on import restrictions for metallurgical coke

India is set to make a decision soon on whether to implement import restrictions on metallurgical coke, a crucial ingredient in steelmaking. According to...

AMMC targets major production milestones by 2030 with ongoing development projects

Almalyk Mining and Metallurgical Combine (AMMC) has set ambitious production goals for 2030, aiming to achieve annual output of 500,000 tons of copper, 50...

Kazatomprom partners with Jordan uranium mining company on joint uranium exploration and extraction

Kazatomprom, Kazakhstan's national atomic company, has entered into a collaboration with Jordan Uranium Mining Company (JUMCO) to jointly explore and extract uranium in Jordan....

Saudi Arabia boosts mining sector to secure global mineral supply and support clean energy transition

As part of Saudi Arabia’s Vision 2030 initiative, the country is making significant strides toward creating a sustainable economy driven by clean energy. To...
Supported by
Supported by
Supported by
error: Content is protected !!